1 minute read

15. 3Sum

문제 링크

https://leetcode.com/problems/3sum/description/

문제 설명

Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.

Notice that the solution set must not contain duplicate triplets.

제한 사항

  • 3 <= nums.length <= 3000
  • -105 <= nums[i] <= 105

입출력 예 #1

  1. Input: nums = [-1,0,1,2,-1,-4]
  2. Output: [[-1,-1,2],[-1,0,1]]
  3. Explanation:
    • nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
    • nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
    • nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.

The distinct triplets are [-1,0,1] and [-1,-1,2]. Notice that the order of the output and the order of the triplets does not matter.

입출력 예 #2

  1. Input: nums = [0,1,1]
  2. Output: []
  3. Explanation: The only possible triplet does not sum up to 0.

입출력 예 #3

  1. Input: nums = [0,0,0]
  2. Output: [[0,0,0]]
  3. Explanation: The only possible triplet sums up to 0.

문제 풀이

브루트포스 방식으로 진행 시 시간초과로 FAIL됨

투 포인터 방식으로 하면 O(n^2)내로 풀 수 있음

class Solution:
    def threeSum(self, nums: List[int]) -> List[List[int]]:
        results = []
        nums.sort()

        for i in range(0, len(nums)-2):
            # 중복된 값 건너뛰기
            if i > 0 and nums[i] == nums[i-1] : 
                continue

            # 간격을 좁혀가며 합 sum 계산
            left, right = i + 1, len(nums) - 1
            while left < right :
                sum = nums[i] + nums[left] + nums[right]
                if sum < 0:
                    left += 1
                elif sum > 0 :
                    right -= 1
                else : 
                    # sum = 0인 경우이므로 정답 및 스킵 처리
                    results.append((nums[i], nums[left], nums[right]))

                    while left < right and nums[left] == nums[left + 1] :
                        left += 1
                    while left < right and nums[right] == nums[right - 1] :
                        right -= 1
                    
                    left += 1
                    right -= 1
        
        return results

Comments